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THE EFFECT OF CHROMATIC DECOHERENCE ON 
TRANSVERSE INJECTION OSCILLATION DAMPING 

Gerald P. Jackson 

Fermi National Accelerator Laboratory, MS 341, P.O. Box 500, Batavia, IL 60510 

In order to eliminate or reduce transverse emittance growth during 
transfers between accelerators, transverse damper systems are used to 
eliminate residual dipole oscillations before phase space dilution takes 
place. In transfers where the target accelerator has high chromaticity or 
the beam has a large momentum spread, phase space dilution due to 
chromatic decoherence can take place on a scale short compared to the 
damping time of the transverse injection oscillation damper. The effect of 
the damper on the beam phase space is not clear while the coherent 
oscillation is suppressed by this decoherence. The purpose of this paper is 
to quantify the effectiveness of dampers at eliminating emittance blowup 
at transfers in the presence of chromatic decoherence. 

1. Chromatic Decoherence 

When a beam is injected with a transverse error, the resultant coherent hetatron 
oscillation can he written as 

x(n) = x0 cos(2nvx n) (1) 

where n is the turn number after injection, vx is the betatron tune of the target accelerator, 
and for clarity sake the injection error is assumed to be purely positional of amplitude x0. 
Since every particle is assumed to have the same hetatron tune, this coherent oscillation 
would continue forever with unchanged amplitude if no damper acted on the beam. 

Assuming that the phase space distribution of the beam is Gaussian in all dimensions, 
and assuming that all particles have the same synchrotron tune v,, then in the case of 
nonzero chromaticity &=dv$(dEE) the hetatron motion is described by the equation’ 

[ 

2524) 2 x(n) = x0 cos(27tVxn)exp - --+ sm (xvsn) 
VS 1 (2) 

where 06 is the fractional momentum spread of the beam. Of course, due to the 
sinusoidal nature of the RF voltage, synchrotron tune is a function of longitudinal 
oscillation amplitude. Therefore, the complete recoherence predicted by this equation 
each time n is a multiple of l/v, is actually reduced each synchrotron period until the 
coherent betatron oscillation has completely and permanently decohered into transverse 
emittance growth. 



2. Simulation Results 

It is possible to simulate chromatic decoherence and the effect of dampers by using a 
multiparticle simulation computer program. By tracking a large number of test particles 
through a theoretical accele,rator containing the appropriate physics and compiling the 
average position and rms width of each phase space plane each turn, one can predict the 
output of actual accelerator diagnostics. The number of test particles used was 1000. 

In this paper a consistent set of conditions has been simulated. The only parameters 
of interest which are modified are the bunch length (to simulate either a long or short 
bunch), the chromaticity, and the feedback gain. Unless otherwise stated, the conditions 
simulated are those listed in table 1. 

Table 1: Standard parameters used in the computer 
simulation runs reported in this paper. The values are 
chosen to approximate injection into the Tevatron Collider. 

In figures 1 and 2, the evolution of the injection betatron oscillation and the rms beam 
size is simulated assuming a short bunch. In cases such as this, where the bunch length is 
much smaller that the bucket length, the beam particles predominantly sample the linear 
part of the RF sine wave and the recoherence phenomenon repeats for many synchrotron 
periods. Particles with larger synchrotron oscillation amplitudes have a synchrotron tune 
lower than small amplitude particles. If the rms bunch length becomes comparable to the 
RF period the nonlinearity of the buckets prevents all of the particles from rephasing after 
a small-amplitude synchrotron oscillation has taken place. Figures 3 and 4 show the 
evolution of the coherent betatron oscillation and beam size in this situation. Because a 
large percentage of particles are at larger amplitude, the bulk modulation frequency is 
also reduced. 
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Figure 1: Example of the comparison between the output of 
a multiparticle simulation program and equation 2 (upper 
smooth curve) for a short bunch. 
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Figure 2: Same run as shown in figure 1, computer program 
simulation of the rms beam size just after injection in the 
presence of chromatic decoherence. 
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Figure 3: Same conditions as simulated in figure 1, but with 
a long bunch. Note that the bulk synchrotron frequency is 
slower due to the dependence of synchrotron tune on 
amplitude. 
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Figure 4: Beam size evolution from the same run displayed 
in figure 3. Note that with the larger tune spread of the 
longer bunch, the permanent conversion of coherent 
amplitude to emittance growth occurs more rapidly. 

4 



The dependence of equilibrium emittance as a function of injection error (normalized 
to the beam size) can be calculated theoretically2. Figure 5 is the result of this 
calculation, where D is the dilution factor defined as the equilibrium emittance divided by 
the initial emittance and 6 is the injection error divided by the beam size. This curve was 
calculated using a 95% criterion for the emittance and dividing by 6 to generate a rms 
value (assuming that the distribution was Gaussian). According to the curve, for the 
standard parameters listed in table 1 the value of 6 is 2.9. Looking at figure 5, this 
corresponds to an emittance dilution of a factor of 4, or beam size step increase of a factor 
of 2. The data in figure 4 confirm this prediction. 

-0 6 3 
Figure 5: Emittance dilution factor as a function of the 
transverse injection oscillation amplitude in units of beam 
size at injection. The horizontal axis is 0.2 per division, the 
vertical axis is 20% emittance growth per division. 

3. Dampers 

The effect of a damper is to reduce the oscillation amplitude of an initial betatron 
oscillation as an exponential function of turn number. A damper is typically composed of 
a pickup, a preamplifier, a delay, a power amplifier, and a kicker where the distance 
between the pickup and kicker is an odd multiple of 90” of betatron phase advance. 
Figure 6 contains a sketch of such a system. 

Figure 6: Sketch of a typical transverse injection 
oscillation damper system. 
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Figure 7: Multiparticle computer simulation result and 
analytical prediction (upper smooth curve) for damping of 
coherent motion due to a transverse injection oscillation 
damper system. For this run the chromaticity was set to 
zero, eliminating the chromatic decoherence shown earlier. 
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Figure 8: Same run as shown in figure 7, but showing the 
evolution of the rms beam size when no decoherence 
mechanism is competing with the damper system. 
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The gain g of such a system is defined to be the fractional correction the damper 
makes each turn. A unity gain system therefore completely removes the beam angle at 
the kicker which corresponded to the measured beam offset a( the pickup. For cases 
where g << 1, the equation describing the motion of the beam centroid wilh turn number 
is an exponential with a characteristic decay time of 2/g 

x(n) = xo cos(2rrv,n)exp - -!L I 1 VI 2 
s 

Figures 7 and 8 show the evolution of the centroid oscillation and the beam size of a 
bunch injected with an initial position error, zero chromaticity, and a damper system 
active with a gain of 0.01. Note that as in the previous section, the results of multiparticle 
simulations agree very well with theoretical predictions. 

4. Damping During Chromatic Decoherence 

The point of this paper is to combine the above two phenomena, chromatic 
decoherence and transverse damping, to assess the utility of injection oscillation dampers 
as a tool to prevent emittance growth at transfers. Given the fact that a theoretical 
calculation has not yet been performed, this analysis is limited to multiparticle simulation 
program results. As a result, in order to make the results presented here applicable to 
transfers in other accelerators, the worst case scenario of an injection error much larger 
than the beam size is simulated. 

There are only 4 parameters which specify the dynamics of injection damping in the 
presence of chromatic decoherence. First, v, determines the time scale of the problem. 
Second, 2vJg determines the damping time (in units of synchrotron periods) in the 
absence of decoherence. Third, the parameter cr&/vs determines the depth of the 
chromatic modulation of the coherent betatron oscillation amplitude. Fourth, bunch 
length determines the speed (again, in units of synchrotron periods) at which a coherent 
betatron oscillation is permanently converted into emittance growth. 

Since the time scale set by the synchrotron tune is only relevant for extrapolation of 
results to other accelerators, it can be considered to be an arbitrary parameter in the 
simulation results presented below. The other three parameters actually determine the 
effectiveness of the injection damping system. Therefore, though it can be accomplished 
by another choice of variable, in this paper chromaticity and feedback gain are varied in 
order to understand the effect of each parameter on the asymptotic emittance after the 
initial oscillation has damped down. In order to demonstrate the effect of the rate of 
permanent emittance growth (determined by a finite bunch length), all simulations are 
performed for both long and short bunch conditions. 
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Figure 9: Damping and decoherence with a short bunch. 
The upper curve is simply the prediction from equation (2) 
not including the damping. 
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Figure 10: .,Damping and decoherence with a short bunch 
for the same simulation run displayed in figure 9. Note that 
for the standard conditions in table 1, some permanent 
emittance growth occurs before the coherent oscillation is 
completely damped. 
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Figure 11: Damping and decoherence with a long bunch. 
Again, the bulk synchrotron frequency is reduced due to the 
large synchrotron amplitude particles sampling the 
nonlinear restoring force of the sinusoidal RF voltage. 
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Figure 12: Damping and decoherence with a long bunch. 
For long bunches the equilibrium emittance is 
asymptotically approached much more quickly than in the 
short bunch case. 
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Figure 13: The dependence of the asymptotically attained 
emittance as a function of chromaticity for a short (bottom) 
and long (top) bunch. 

The effectiveness of injection betatron oscillation damping vs. chromaticity is the first 
study presented. Since the figure of merit is the increase in emittance due to the injection 
error during transfer, a plot of equilibrium emittance vs. chromaticity is displayed in 
figure 13. With both long and short bunch results plotted, the first feature to notice in 
figure 13 is the fact that the faster the permanent decoherence rate, the larger the 
emittance growth with increasing chromaticity. In order to keep the emittance growth 
below 10%. a long bunch must have a chromaticity of less than I unit, while for a long 
bunch a chromaticity of approximately 2 units is tolerable. This is in the case of a 
damping time approximately two thirds of a synchrotron period (2/g=200 turns). 
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Figure 14: Amplitude of a coherent betdtron oscillation vs. 
turn number for a short bunch. The smooth curve 
superimposed on the data, and in most cases above the 
simulated data, is just equation (2) multiplied by an 
exponential decaying factor. 
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Figure 15: By adjusting the exponential decay time to 
match the amplitude of the second amplitude recoherence 
peak with the theoretical curve, the above plot of equivalent 
damping time (in turns) vs. chromaticity is generated. 

To better quantify this result, it is necessary to understand the effective damping rate 
as a function of chromaticity. First, for zero chromaticity the damping time of a g=O.Ol 
feedback system is 200 turns. For a short bunch, the time evolution of the coherent 
betatron amplitude vs. turn number is fitted with a function which is composed of 
equation (2) multiplied by an exponential decay factor. By finding the decay time in the 
exponent which generates the best agreement between this function and the data, an 
equivalent damping time dependence on chromaticity can be found. Figure I4 shows an 
example of such a best fit. Figure 15 shows the measured relationship between this 
equivalent damping time and chromaticity. Oddly enough, this dependence is a straight 
line with an asymptotic minimum of 200 turns (the value of 2/g). Therefore, for a short 
bunch and the default machine conditions, the equivalent damping time is 600 turns. 

Often the gain of the feedback system is easier to change than the chromaticity. 
Chromaticity sometimes must be kept high due to instabilities or drifting sextupole 
moment around the ring due to time dependent persistent currents in superconducting 
dipole magnets. For fixed chromaticity, the evolution of emittance with turn number as a 
function of gain is shown in figure 16. Compiling the results of equilibrium emittance for 
both long and short bunch simulations for a wide range of gains, the plot in figure 17 is 
generated. 

There are a number of interesting features in figure 17. Again, it is clear that a higher 
gain system is required for long bunches. The surprising feature of these results is the 
necessity of very short damping times (10 turns for long bunches and 20 turns for short 
bunches) to keep the emittance growth down to less than 10%. 

11 
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Figure 16: Time evolution of emittance for a number of 
gains. The top, fully modulated curve is for no damping. 
The lower curves are for gains of 0.01, 0.02, 0.05, 0.10, 
0.20, and 0.50. The curves were generated with a long 
bunch. 
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Figure 17: Asymptotically approached emittance as a 
function of gain for the data displayed in figure 16. The top 
curve is for a long bunch, the lower curve for a short bunch. 

5. Extrapolation to SSC and Elosiatron 

Tables 2 and 3 contain the SSC3 and Eloisatron4 values of the parameters shown in 
table 1. The initial geometric emittance and beam size are design values. The energy 
width and synchrotron tune are also design values. The chromaticity was chosen to keep 
the modulation amplitude a&/v, at the value of 0.82. The injection error was chosen to 
be the same amplitude relative to the beam size as in the Tevatron case. The feedback 

I2 



gain is adjusted so that the damping time is the same number of synchrotron periods as in 
the Tevatron case. The RF period is calculated from the design RF frequencies, while the 
bunch lengths are adjusted to be the Tevatron fraction of the RF bucket occupied. 

Table 2: Standard parameters used in the computer 
simulation runs reported in this paper. The values are 
chosen to approximate injection into the SSC Storage Ring. 

Table 3: Standard parameters used in the computer 
simulation runs reported in this paper. The values are 
chosen to approximate injection into the Eloisatron. 

Applying the results found for the Tevatron parameters, for the parameters in table 2 
the SSC ring must keep the chromaticity below 2 units for long bunches and 4 units for 
short bunches to restrict the injection emittance growth down to under 10%. 
Alternatively, the absolute damping time of the injection feedback system must be at 
most 30 turns for short bunches and I5 turns for long bunches. These damping times 
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correspond to gains of 0.067 and 0.133 respectively, compared with 0.05 and 0.10 in the 
Tevatron. 

In the case of the Eloisatron (a 100x100 Tev proton-proton collider), for the 
parameters in table 3 the main ring must keep its injection chromaticity below 3 units for 
a long bunch and 6 units for a short bunch. Varying the damping gain, the absolute 
damping time of the injection feedback system must be at most 60 turns for short bunches 
and 30 turns for long bunches (corresponding to damping gains of 0.033 and 0.067). 

6. Conclusions 

In this paper the dependence of emittance growth at injection into a high energy 
hadron accelerator is explored using a multiparticle computer simulation. Assuming both 
a short and long bunch, the reduction of emittance growth due to a damper system is 
shown to be compromised by large chromaticities. The damper gain required for 
reasonable choices of chromaticities is surprisingly large, meaning that the coherent 
betatron injection oscillation must be damped with a time constant much shorter than the 
decoherence time due to chromaticity. 
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